Boats and Streams

EXERCISE 15A

For SSC GD \& MTS Exams

1. A boat goes a distance of 4 km upstream in 2 hours and the same distance downstream in 20 minutes. How long will it take to go $10 \frac{1}{2} \mathrm{~km}$ in still water?

SSC MTS 22/08/2019 (Shift-3)
(a) $1 \frac{1}{2}$ hours
(b) 48 minutes
(c) $1 \frac{1}{4}$ hours
(d) 1 hour
2. The speed of a boat is still water is $15 \mathrm{~km} / \mathrm{h}$. The speed of the current is $3 \mathrm{~km} / \mathrm{h}$. In how much time (in hours) will the boat travel a distance of 54 km upstream and the same distance downstream?

SSC MTS 22/08/2019 (Shift-2)
(a) $7 \frac{1}{2}$
(b) 7
(c) 6
(d) $6 \frac{1}{2}$
3. A boat takes 45 minutes to go 3 km upstream and $4 \frac{1}{2}$ km downstream while it covers a distance of 3.6 km upstream and 2.4 km downstream in 39 minutes. The speed $(\mathrm{km} / \mathrm{h})$ of this boat in downstream is:

SSC MTS 20/08/2019 (Shift-1)
(a) 12
(b) 16
(c) 9
(d) 10
4. A boat can go 10 km upstream and 20 km downstream in 7 hours. It can go 20 km upstream and 10 km downstream in 11 hours. What is the speed of this boat in still water?

SSC MTS 19/08/2019 (Shift-2)
(a) $2 \mathrm{~km} / \mathrm{h}$
(b) $8 \mathrm{~km} / \mathrm{h}$
(c) $6 \mathrm{~km} / \mathrm{h}$
(d) $4 \mathrm{~km} / \mathrm{h}$
5. A boat goes at $20 \mathrm{~km} / \mathrm{h}$ up stream and at $30 \mathrm{~km} / \mathrm{h}$ down the stream. What is the speed of this boat in still water?

SSC MTS 16/08/2019 (Shift-3)
(a) $26 \mathrm{~km} / \mathrm{h}$
(b) $24 \mathrm{~km} / \mathrm{h}$
(c) $25 \mathrm{~km} / \mathrm{h}$
(d) $22.50 \mathrm{~km} / \mathrm{h}$
6. In one hour, a man rows his canoe against the stream at $11 \mathrm{~km} / \mathrm{h}$ and along the stream at $23 \mathrm{~km} / \mathrm{h}$. What is the speed (in km / h) of stream?

SSC MTS 14/08/2019 (Shift-3)
(a) 6
(b) 5
(c) 17
(d) 16
7. A boat takes 80 minutes to 12 km upstream and 60 minutes to row 15 km downstream. How long will it take to row a distance of 36 km in still water?

SSC MTS 13/08/2019 (Shift-2)
(a) 2 hours
(b) 3 hours
(c) 4 hours
(d) 2.5 hours
8. If the speed of the stream is 20% of the speed of boat in still water and it covers 120 km upstream in 150 minutes, then what is the downstream speed of the boat?

SSC MTS 9/08/2019 (Shift-2)
(a) $75 \mathrm{~km} / \mathrm{hr}$
(b) $72 \mathrm{~km} / \mathrm{hr}$
(c) $80 \mathrm{~km} / \mathrm{hr}$
(d) $64 \mathrm{~km} / \mathrm{hr}$
9. The speed of a boat in still water is $30 \mathrm{~km} / \mathrm{hr}$. If the boat covers 60 km downstream in 1 hour 30 minutes, then what is the time taken by the boat to cover 60 km upstream?

SSC MTS 7/08/2019 (Shift-3)
(a) 3 hours
(b) 5 hours
(c) 4 hours
(d) 1 hour
10. A boat covers 64 km upstream in 8 hours and 120 km downstream in 12 hours. What is the speed (in m / s) of the boat in still water?

SSC MTS 7/08/2019 (Shift-1)
(a) 2.5
(b) 2
(c) 3.5
(d) 3
11. The downstream speed of a boat is $14 \mathrm{~km} / \mathrm{h}$. The upstream speed of this boat is $10 \mathrm{~km} / \mathrm{h}$. In what time it can cover a distance of 72 km in still water?

SSC MTS 6/08/2019 (Shift-1)
(a) 8 hours
(b) 6 hours
(c) 4 hours
(d) 12 hours

SOLUTIONS

1. (a) Let speed of boat $=x \mathrm{~km} / \mathrm{h}$

Speed of water $=y \mathrm{~km} / \mathrm{h}$
Upstream speed $=x-y=\frac{4}{2}=2$
Downstream speed $=x+y=\frac{4 \times 60}{20}=12$
From equation $(i)+(i i)$

$$
x=7, y=5
$$

Taking time to cover $2 \frac{1}{7} \mathrm{~km}$ distance

$$
=\frac{27}{2 \times 1}=\frac{3}{2}=1 \frac{1}{2} \text { hours. }
$$

2. (b) Trick:
(Speed) Upstream of boat $=15-3=12 \mathrm{~km} / \mathrm{h}$
(Speed) Downstream of boat $=15+3=18 \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
\text { Taken time } & =\frac{54}{12}+\frac{54}{18}=\frac{162+108}{36} \\
& =\frac{270}{36}=7 \frac{1}{2} \text { hours. }
\end{aligned}
$$

3. (a) Let speed of boat $=x \mathrm{~km} / \mathrm{h}$

Speed of stream $=y \mathrm{~km} / \mathrm{h}$
Speed of upstream $=(x-y) \mathrm{km} / \mathrm{h}$
Speed of downstream $=(x+y) \mathrm{km} / \mathrm{h}$
$\Rightarrow 3 /(x-y)+4.5 /(x+y)=\frac{45}{60}$
$\Rightarrow \quad 3.6 /(x-y)+2.4 /(x+y)=\frac{39}{60}$
Multiply by 1.2 in equation (i) and equation (i) - (ii)
$\Rightarrow \quad 3 /(x+y)=1 / 4 \mathrm{~km} / \mathrm{h}$
$\Rightarrow \quad x+y=12 \mathrm{~km} / \mathrm{h}$
\therefore Downstream speed $=12 \mathrm{~km} / \mathrm{h}$
4. (c) Let Speed of boat $=\mathrm{D}$ (Downstream)

Speed of boat $=U($ Upstream $)$
According to question,
$\Rightarrow \quad \frac{10}{\mathrm{U}}+\frac{20}{\mathrm{D}}=7$
$\Rightarrow \quad \frac{20}{\mathrm{U}}+\frac{10}{\mathrm{D}}=11$
Make factor of 10 and 20 and choose the common value

$$
\begin{aligned}
& 10=2,5,10 \\
& 20=2,4,5,10
\end{aligned}
$$

Put the value in equation (i)

$$
\begin{aligned}
\frac{10}{\mathrm{U}}+\frac{20}{2} & =7 \\
\mathrm{U} & =2 \\
\frac{10}{\mathrm{D}}+\frac{20}{2} & =11 \\
\mathrm{D} & =10
\end{aligned}
$$

$\therefore \quad$ Speed of boat in still water $=\frac{10+2}{2}=\frac{12}{2}$

$$
=6 \mathrm{~km} / \mathrm{h}
$$

5. (c) Trick

Speed of Boat in water

$$
\begin{aligned}
= & \frac{\text { Up stream }+ \text { down stream }}{2} \\
& =\frac{30+20}{2}=\frac{50}{2}=25 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

6. (a) Let speed of canoe $=B$
and speed of current $=\mathrm{C}$
ATQ, down stream $B+C=23$
Up stream B $-\mathrm{C}=11 \ldots(i i)$
equation $(i)+(i i)$

$$
B=17, C=6
$$

$\therefore \quad$ Speed of current $=6 \mathrm{~km} / \mathrm{hr}$
7. (b) According to question,

Speed of boat in upstream $=\frac{12}{80} \times 60=9 \mathrm{~km} / \mathrm{h}$ Speed of boat in downstream

$$
=\frac{15}{60} \times 60=15 \mathrm{~km} / \mathrm{h}
$$

Speed of boat in water

$$
\begin{aligned}
& =\frac{\text { Up stream speed }+ \text { down stream sp }}{2} \\
& =\frac{9+15}{2}=\frac{24}{2}=12 \mathrm{~km} / \mathrm{h} \\
\therefore \quad \text { Time taken } & =\frac{36}{12}=3 \mathrm{hr}
\end{aligned}
$$

8. (b) Trick:

$$
\begin{aligned}
& \therefore \quad \frac{20}{100} \text { Upstream }=\frac{4}{5} \\
& \text { and } \quad \text { downstream }=\frac{6}{5} \\
& \text { ATQ, } \because \quad \frac{4}{5} \text { unit }=120 \times \frac{60}{150} \\
& \therefore \quad 1 \text { unit }=120 \times \frac{60}{150} \times \frac{5}{4}=60 \\
& \text { Speed of downstream }=60 \times \frac{6}{5}=72 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

9. (a) Let speed of stream $=\mathrm{S} \mathrm{km} / \mathrm{h}$

So, speed of downstream $=(30+S) \mathrm{km} / \mathrm{h}$ and speed of upstream $=(30-S) \mathrm{km} / \mathrm{h}$ ATQ,

$$
\begin{aligned}
(30+\mathrm{S}) \times \frac{90}{60} & =60 \\
\Rightarrow \quad 30+5 & =40 \\
\mathrm{~S} & =40-30=10 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

$\therefore \quad$ Time taken $(\mathrm{Up}$ stream $)=\frac{60}{20}=3 \mathrm{hrs}$.
10. (a) Speed of boat in upstream $=\frac{64}{8}=8 \mathrm{~km} / \mathrm{h}$

Speed of boat in downstream $=\frac{120}{12}=10 \mathrm{~km} / \mathrm{h}$
$\therefore \quad$ Speed of boat in still water

$$
\begin{aligned}
= & \frac{\text { Up stream }+ \text { down stream }}{2} \\
& =\frac{8+10}{2}=9 \mathrm{~km} / \mathrm{h} \\
& =9 \times \frac{5}{18}=2.5 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

11. (b) Speed of boat in upstream $=10 \mathrm{~km} / \mathrm{h}$ Speed of boat in downstream $=14 \mathrm{~km} / \mathrm{h}$
$\therefore \quad$ Speed of still water $=\frac{10+14}{2}=\frac{24}{2}$

$$
=12 \mathrm{~km} / \mathrm{h}
$$

$\therefore \quad$ Taken time $=\frac{72}{12}=6 \mathrm{hrs}$.

EXERCISE 15C

For SSC CGL \& CPO Exams

1. A boat can cover a distance of 7.2 km downstream and 3.2 km upstream in 2 hours. It can also cover 1.5 km downstream and 0.6 km upstream in 24 minutes. What is the speed of the boat when going downstream (in km / h)?
[SSC CGL 7/06/2019 (Shift-1)]
(a) 6
(b) 4.5
(c) 5
(d) 7.5

SOLUTIONS

1. (a) According to question,
$\mathrm{D}=$ Down stream, $\mathrm{U}=$ up stream

$$
\begin{align*}
& \frac{7.2}{\mathrm{D}}+\frac{3.2}{\mathrm{U}}=2 \tag{i}\\
& \frac{1.5}{\mathrm{D}}+\frac{0.6}{\mathrm{U}}=\frac{2}{5} \tag{ii}
\end{align*}
$$

equation $(i) \times 3+$ equation $(i i) \times 1.6$

$$
\begin{array}{rlrl}
\frac{21.6}{\mathrm{D}}+\frac{9.6}{\mathrm{U}} & =6 \\
\frac{2.4}{\underline{D}}+\frac{9.6}{U} & =\frac{32}{5} \\
\frac{-}{2.4} & =.4 \\
\therefore & \mathrm{D} & =6
\end{array}
$$

